Transdifferentiation potential of adipose-derived stem cells into neural lineage and their application
نویسندگان
چکیده
Adipose-derived stem cells are a kind of mesenchymal stem cells which have a higher frequency in the adipose tissue and can be harvested by minimally invasive procedures. These cells are able to differentiate into other cells outside their lineage such as neuron, neurotrophic factor secreting cells and Schwann cells. Many of the identified neurotrophic factors such as brain-derived neurotrophic factor, nerve growth factor, and glial cell line-derived neurotrophic factor can be produced by adipose-derived stem cells. In addition, these cells when differentiated into neurotrophic factor secreting cells are able to secrete a significantly high level of these factors. Neurotrophic factors have a significant role in cellular processes include cell proliferation, differentiation and maturation. This article reviews the in vitro differentiation of adiposederived stem cells into neural lineage cells and clinical application.
منابع مشابه
Differential gene expression by lithium chloride induction of adipose-derived stem cells into neural phenotype cells
Objective(s): Adipose-derived stem cells (ADSCs), with suitable and easy access, are multipotential cells that have the ability for differentiation into other mesodermal and transdifferentiate into neural phenotype cells. In this study, Lithium chloride (LiCl) was used for in vitro transdifferentiation of rat ADSCs into neuron-like cells (NLCs).<stro...
متن کاملReview Paper: Embryonic Stem Cell and Osteogenic Differentiation
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...
متن کاملExpression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition
Objective(s): Studies have confirmed that microgravity, as a mechanical factor, influences both differentiation and function of mesenchymal stem cells. Here we investigated the effects of simulated microgravity on neural differentiation of human adipose-derived stem cells (ADSCs). Materials and Methods:We have used a fast rotating clinostat (clinorotation) to simulate microgravity condition. R...
متن کاملThe Potential of Menstrual Blood-Derived Stem Cells in Differentiation to Epidermal Lineage: A Preliminary Report
BACKGROUND Menstrual blood-derived stem cells (MenSCs) are a novel source of stem cells that can be easily isolated non-invasively from female volunteered donor without ethical consideration. These mesenchymal-like stem cells have high rate of proliferation and possess multi lineage differentiation potency. This study was undertaken to isolate the MenSCs and assess their potential in differenti...
متن کاملMesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue
Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...
متن کامل